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Abstract
Fiber-optic sensors do not interfere with electromagnetic fields and are commonly used to measure

temperature and pressure used in microwave and frequency heating research and applications. This article

introduces the physical principles for three different types of commonly used fiber-optic sensors and

discusses important parameters to be considered in selecting appropriate fiber-optic sensors for rapid

heating applications.
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INTRODUCTION

Temperature measurements are necessary for the develop-

ment and control of dielectric heating processes in food

and agricultural processing applications, such as drying,

cooking, thawing, cooking, pasteurization, and steriliza-

tion. Conventional temperature sensors based on thermo-

electric effects (e.g., thermocouples, RTD, and

thermistors) distort the electromagnetic field in the vicinity

of the probes and give erroneous readings. Fiber-optic

sensors, on the other hand, do not interact with

electromagnetic energy. They are now commonly used

in microwave and radio frequency heating research and

industrial operations.

Fiber-optic temperature sensors provide comparable

accuracy to thermocouples in a normal heating medium.

The probe sizes of fiber-optic sensors are generally small.

For example, Luxtron Corporation (Santa Clara, CA)

produces a standard fiber-optic temperature sensor with an

outer diameter as small as 0.5 mm and FISO Technologies,

Inc. (Quebec, QC, Canada) supplies sensors as small as

0.3 mm diameter. The response times of commercial fiber-

optic temperature sensors in liquid media vary between

0.05 and 2 s, which make them well-suited for measuring

relatively rapid temperature rises in materials during

microwave or radio frequency (RF) heating. Fiber-optic

sensors have been used extensively in research to monitor

temperature and pressure changes during high temperature

short-time microwave and RF drying and sterilization

processes.[1–4]
Agricultural, Food, and Biological Engineering DOI:10.1081/
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PRINCIPLE OF FIBER-OPTIC
TEMPERATURE SENSORS

Fiber-optic temperature sensors are developed based on

one of three methods: fluorescence decay time, Fabry–

Pérot interferometry, and transmission spectrum shift in

semiconductor crystals. The physical principles used for

the design of those systems vary from companies to

companies.
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Fluorescence Decay Time

This technique is used by Luxtron Corporation (Santa

Clara, CA)[5] and Ipitek (Carlsbad, CA). Luxtron, founded

in 1978, commercializes its fiber-optic temperature

sensors under the registered trademark Fluoroptic Tech-

nology. Their products were developed based on a unique

optical property of phosphorescent materials, a.k.a.

phosphors: the decay time of the sensor’s emitted light

varies precisely with temperature.

Fluoroptic technology uses a fiber-optic cable to

connect the sensor to the instrument. In Luxtron’s

temperature sensors, a phosphor element is attached to

the tip of a silica fiber and encapsulated in Teflonw tube.

The phosphor material was excited with a light source.

Early generation Fluroroptic thermometry systems used

xenon flash lamps as the light sources, but current systems

use smaller and more reliable light-emitting diodes

(LEDs). In operation, the instrument sends pulses of

light from the LED through the fiber to the sensor. The

light pulses excite the phosphorescent sensor causing it to

emit light.

The Luxtron sensor emits radiation over a broad

spectrum in the near infrared region (Fig. 1). The emitted

light returns to the Luxtron instrument through the same

fiber-optic cable. Because the excitation light and emitted
E-EAFE-120041609
1
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Light emitted by sensor
and detected by luxtron

LED light sent by
luxtron instrument
to excite sensor

Fig. 1 Spectral excitation and emission from Luxtron’s Fluoroptic sensor. (Courtesy of Luxtron.)
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light are of different colors, the instrument can distinguish

between the two signals.

After the LED is turned off, the decaying fluorescent

signal (Fig. 2) continues to transmit through the fiber to the

instrument, where it is focused onto a detector.

The rate of the afterglow decay is dependent on the

phosphor temperature. In general, the colder the sensor,

the longer the decay time of the phosphor’s emitted light.

The measured decay time is then converted to the

temperature of the phosphor (Fig. 3) using a built-in

conversion table. Different conversion tables are used

depending on temperature range and application. The

overall temperature range capability of current technology

is between K200 and 3308C, typically to a precision of

0.18C–0.28C. The accuracy of calibrated temperature

sensors is in the order of G 0.58C.

The fact that the excitation light signal and the

fluorescent decay signal share the same optic cable

makes it possible to produce small-diameter probes. This

is particularly important in applications where there is a

need to minimize disturbance to the object being

measured.

A special application of Fluoroptic technology is

measuring the surface temperature of fast moving objects
Q1

Fig. 2 Decay of after-glow emitted by a phosphor sensor.

(Courtesy of Luxtron.)
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with a non-contact sensing method. Luxtron’s remote

sensor kit provides users with supplies and instructions to

paint a small patch of the sensor material onto the object to

be measured (Fig. 4). Once applied, the sensor can be

observed remotely using an optical probe. This method

offers the advantages of short response time and

nonperturbation of the measured object.
Fabry–Pérot Interferometry

FISO Technologies (Quebec, QC, Canada) and Photo-

netics (Peabody, MA, U.S.A., ceased to operate in 2002)

developed their temperature and pressure sensors based on

an interferometer, otherwise referred to as white light

interferometry (WLI). The sensing element of the probe

based on WLI is a Fabry–Pérot interferometer (FPI),

which is permanently attached to the tip of an optical fiber.

The FPI interferometer consists of two parallel reflective

surfaces (mirrors) attached to each end. These two

reflective mirrors face each other and form a cavity

resonator. FISO’s FPI-based sensors use a thermally

expandable piece of glass between the two reflected

surfaces. The length of this piece defines the FPI cavity
Fig. 3 The decay time of phosphor afterglow (time to decay

to 1/e of the original strength) according to temperature.

(Courtesy of Luxtron.)
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Fig. 4 Schematic drawing of Luxtron’s remote sensing

method. (Courtesy of Luxtron.)

Fig. 6 Transmission spectrum shift in semiconductor crystals.
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depth (1–2 wavelengths deep) and changes with tempera-

ture due to thermal expansion. The measurement of other

physical parameters, such as pressure, is also possible

when using FPI interferometry. Fiber-optic pressure

sensors can be very useful in studying the influence of

internal pressure on texture and drying rate during

microwave and RF drying operations.1
Lens

White-light
cross-correlator 

Cross-correlation
function

Linear CCD array

pixel

2×2 Coupler

I
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 Incident
light

Connector

I

FPI Modulated
Reflected light

Incident
light

Readout instrument

Fabry-Pérot
Gauge

Optical Fiber

Fused welding

Semi-reflecting
mirrors

Multimode optical
fiber

Micro
capillary

Fig. 5 Schematics showing the principles of FPI for the

FISO system. (Courtesy of FISO Technologies, Inc.)
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Cavity length in FPI sensors changes in response to

strains, external stresses, or temperature changes. The key

to the successful use of FPI technology depends on an

effective means of obtaining precise and reliable Fabry–

Pérot cavity length measurements. In the FISO systems, a

white-light cross-correlator is used to measure the FPI

cavity length. In principle, white light from a broadband

source is directed into one arm of a 2!2 coupler and

directed toward the Fabry–Pérot gauge (Fig. 5). The

wavelength of the light is modulated by the gauge (FPI

cavity) and reflected back toward the sensor readout

instrument. The wavelength-modulated light is transmitted

through a white-light cross-correlator and detected by a

linear charge-coupled device (CCD) array. The white-light

cross-correlator acts as a spatially distributed Fabry–Pérot

cavity in which the cavity length varies along the lateral

position. Interaction of the modulated light and the

correlator generates a light pattern detected by the CCD

array to yield information on the length of the FPI cavity.

When used in microwave or RF processes, changes in the

FPI cavity path or in the optical path length of the

resonators are measured to determine the temperature or

pressure experienced by the sensing element through a

pre-established relationship between FPI cavity length and

measured physical parameters Cable and Saaski.[6]

Transmission Spectrum Shift in
Semiconductor Crystal

In the early nineties, Nortech-Fibronic Inc. (Quebec, QC,

Canada) developed their temperature measurement sen-

sors using the temperature-dependent light absorption/

transmission characteristics of a semiconductor crystal

gallium arsenide (or GaAs). A unique feature of this

crystal is that when temperature increases, the crystal’s

transmission spectrum shifts to a higher wavelength

(Fig. 6). Measuring the position of the absorption shift,

using a grating-based near infrared spectrometer, provides

information on the temperature of the sensing element.

Specifically, the Nortech sensors consist of a multi-

mode optical fiber packaged in two layers of durable PTFE

Teflon, terminated in a semiconductor (GaAs) crystal

and a dielectric mirror at the fiber tip (Fig. 7). A beam of
ncyclopedias
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Fig. 7 Schematic diagram of a GaAs probe.

(Courtesy of Neoptix Inc.)
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multi-wavelength light is emitted from the light source in

the signal conditioner and travels through a 2!1 optical

coupler towards the sensor. Changes in the temperature of

the GaAS crystal alter the transmission spectrum. The

transmitted light through the semiconductor crystal

impinges on the mirror at the end of the sensor, and is

reflected back to the spectrum analyzer via the optical

coupler. This optical signal is then converted into an

electrical signal using a CCD. The electronics in the

readout device evaluate the cutoff wavelength of absorp-

tion within the multi-wavelength spectrum. Analysis of the

optical spectrum detected by the spectrum analyzer

provides the crystal’s temperature.

Nortech-Fibronic ceased to provide temperature sen-

sors in 2001, FISO acquired the rights to manufacture and

sell these sensors in 2001, and Neoptix acquired similar

rights in 2004. The temperature calculation in the

instrument depends solely on the wavelength of

the transition of a fundamental physical characteristic

of the GaAs. These systems are, therefore, immune to

signal intensity, thus making it possible to develop probes

up to 1,000 m. This technology also eliminates the need to

enter a gage factor when interchanging probes. The typical

response time of the Neoptix probes in water is 0.25 s and

probes can be as small as 0.4 mm.
Fig. 8 Definition of response time, t, of a temperature sensor.
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APPLICATION CONSIDERATIONS

Fiber-optic sensors are often used for temperature

measurement in ambient environments and not specifically

designed for high temperature measurement in a pressur-

ized environment. Careful selection of types of protection

sleeves for fiber-optic sensors are necessary to ensure that

the sensors can endure the hostile high temperature and

pressure in thermal processing environment. Fiber-optic

sensors are generally very fragile and require regular

calibration to ensure that temperature readings are reliable.

Microwave and RF heating are rapid. It is, therefore,

critical that the response time of the sensors, t, is small

enough to accurately follow the rapid temperature changes

in microwave and RF heating applications (see definition

in Fig. 8). A large thermal lag in the temperature sensors

used in process control would significantly underestimate

the product temperature during rapid heating processes

(Fig. 9). The following relationship can be used to assess if

a temperature sensor has an adequately short response time

for a rapid heating process, assuming a linear ramping

temperature change:

t Z DT = _T ð1Þ

where t is the thermal response time of the sensor in the

measured product, the time needed for the sensor to reach
Fig. 9 Temperature lag of a sensor when subjected to a linear

temperature ramp in the test medium.
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63.2% of a step-change in medium temperature DT is

maximum allowable temperature lag, and _T(or dT/dt) is
heating rate.

For example, thermal processes to produce shelf-stable

low acid foods are among the most regulated food

processing operations that demand accurate temperature

measurements for process development and control. In

those applications, it is required that temperature

measurement errors be less than 0.58C. In the micro-

wave-based thermal processes reported by Ohlsson[7] and

Guan et al.,[2] the heating rate was 1 and 0.338C/s,

respectively. Based on Eq. 1, the response time of the

temperature sensors should be less than 0.5 and 1.67 s,

respectively, in order to limit the measurement error due to

thermal lag to less than 0.58C. It is possible that even more

rapid microwave heating processes are used in the food

industry, which would require shorter response times. Not

all fiber-optic sensors can satisfy this requirement. For

applications that involve microwave or RF heating in

conjunction with heating with pressurized water or steam,

fiber-optic sensors from certain companies do not perform

well. Users need to be very carefully in evaluating the

performance of fiber-optic sensors and select appropriate

sensors to meet the specific requirements of desired

applications.
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